Plasma Glycated CD59 (pGCD59) Predicts Early Gestational Diabetes (GDM) and Abnormal Neonatal Outcomes: DALI Study Secondary Analysis

Author Block: JOSE HALPERIN, DONGDONG MA, MIGUEL A. LUQUE-FERNANDEZ, DELIA BOGDANET, GERNOT DESOYE, FIDELMA DUNNE, ON BEHALF OF DALI STUDY, Boston, MA, London, United Kingdom, Galway, Ireland, Graz, Austria

pGCD59 is an emerging biomarker for diabetes and GDM. In 1,000 women undergoing 2-step GDM screening, pGCD59 at weeks 24-28 classified GDM subjects with high sensitivity and specificity and was associated with the risk of large for gestational age (LGA) babies. GDM early in pregnancy is a public health challenge because it increases the risk of adverse outcomes. To assess pGCD59 as a predictor of early GDM and abnormal outcomes, levels of pGCD59 were measured in 807 samples from women undergoing a 1-step OGTT (75gr-2hr; WHO 2013 criteria) at <20 weeks gestation in the DALI study, a European trial of women at high risk of GDM.

Results: Among 807 samples, 481 subjects had normal glucose tolerance throughout the pregnancy (Controls) and 205 met WHO 2013 criteria for GDM at <20 weeks (Cases). Age, race/ethnicity, and BMI were similar among Cases and Controls. pGCD59 accurately predicted the diagnosis of GDM in early pregnancy (AUCROC = 0.9). The risk of LGA (>90th percentile) was positively associated with pGCD59 (p = 0.04) in Cases but not in Controls. Cases who delivered LGA newborns had higher median levels of pGCD59 than those who delivered non-LGA newborns (pGCD59 (SPU): Case-LGA: 4.4[1.5], Case-non-LGA 3.8[1.2]; p = 0.03). In contrast, median levels of pGCD59 were similar in Controls who delivered LGA or non-LGA newborns. The risk of congenital malformations or neonatal hypoglycemia was also associated with higher maternal levels of pGCD59: i) mothers who delivered babies with malformations had 60% higher mean pGCD59, ii) the odds ratio of a malformation was 3.4 (95% CI: 1.1, 10.1) in the 4th as compared with the 1st quartile of pGCD59, and iii) one unit increase in pGCD59 was associated with a 70% higher odds ratio of neonatal hypoglycemia. HbA1c failed to predict GDM or abnormal neonatal outcomes.

Conclusion: Our results indicate that pGCD59 is a simple and accurate biomarker for early detection of GDM and for risk assessment of its potentially serious complications.